由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學(xué)家唯恐陷進去而采取退避三舍的態(tài)度。
在1874—1876年期間,不到30歲的年輕德國數(shù)學(xué)家康托爾向神秘的無窮宣戰(zhàn)。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應(yīng),也能和空間中的點一一對應(yīng)。這樣看起來,1厘米長的線段內(nèi)的點與太平洋面上的點,以及整個地球內(nèi)部的點都“一樣多”,后來幾年,康托爾對這類“無窮集合”問題發(fā)表了一系列文章,通過嚴(yán)格證明得出了許多驚人的結(jié)論??低袪柕膭?chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”。來自數(shù)學(xué)權(quán)威們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神分裂癥,被送進精神病醫(yī)院。
真金不怕火煉,康托爾的思想終于大放光彩。1897年舉行的第一次國際數(shù)學(xué)家會議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托爾的工作“可能是這個時代所能夸耀的最巨大的工作。”可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。